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Abstract 

 
This paper addresses the novel challenges and 

opportunities that model-based design poses to 
software assurance. The novelty stems from the fact 
that the models are deliberately made to be machine 
manipulable, leading to a shift in emphasis and scope 
of human activities vs. machine-conducted activities. 
As a result, it requires a more closely coupled set of 
processes and techniques to achieve the desired level 
of product and process assurance.  Opportunities arise 
from the machine manipulable nature of the artifacts, 
making them amenable to analytic methods and 
automated tools.  The significant advantages of 
analytic methods over conventional assurance 
practices stem from their superior thoroughness, 
repeatability and applicability, especially when 
applied to models. In response, we are working 
towards an integrated software assurance process that 
combines advantages of top-down and bottom-up 
approaches to ensure the quality of the model and the 
quality of the software implementation.  
 
1. Introduction 
 

NASA and other space agencies rely on ever larger, 
more complex software systems to do more challenging 
space missions.  This trend raises the stakes and 
increases the risks, and so drives the need for 
breakthrough solutions to reduce risks. For example, for 
the Mars Exploration Rovers, entry, descent, and 
landing were software controlled, and relatively 
sophisticated (for example, they included on-board 
algorithms to analyze data from the downward-viewing 
imager, ranger and inertial measurement unit to 
determine horizontal velocity so as to direct lateral 
thruster firings during descent [1]).  Tom Gavin, the 
associate director of JPL, said “…that is a software 
driven system, and a lot of the project risk is in how 
robust that software is… ” [2]. 

There is a critical need for assurance methods that 
will be applicable to the verification and validation of 
models. For example, Mars Polar Lander is thought to 
have failed when the software turned off its engines too 
soon. The flaw in the software-system design was 
introduced when the software requirements were 
derived from the system requirements, and was not 
caught in subsequent review and testing [3]. Had there 
been a system model, this flaw would have been 
possibly detected - the (retrospective) application of a 
model-based testing approach demonstrating this  is 
described in [4]. 

This paper addresses the novel challenges and 
opportunities that model-based design poses to 
software assurance, defined as “the planned and 
systematic set of activities that ensure that software life 
cycle processes and products conform to requirements, 
standards, and procedures.” [IEEE 610.12, IEEE 
Standard Glossary of Software Engineering 
Terminology] For NASA this includes the disciplines of 
Software Quality (functions of Software Quality 
Engineering, Software Quality Assurance, Software 
Quality Control), Software Safety, Software Reliability, 
Software Verification and Validation, and IV&V. 
[NASA-STD-8739.8]. The novelty stems from the fact 
that the models are deliberately made to be machine 
manipulable, leading to a shift in emphasis and scope of 
human activities vs. machine-conducted activities. As a 
result, it requires a more closely coupled set of 
processes and techniques to achieve the desired level 
of product and process assurance.  Opportunities arise 
from the machine manipulable nature of the artifacts, 
making them amenable to “analytic verification” and 
automated tool. NASA (National Aeronautics and 
Space Administration) defines “analytic verification” as 
“a set of techniques and tools based on mathematical 
modeling and formal logic that are used to specify and 
verify requirements and designs for computer systems 
and software” [5]. Section 2 considers software 
assurance, Section 3 analytic verification. 
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2. Software Assurance Process 

 
The objective of the software assurance process is 

to improve the quality of mission-critical software, and 
the productivity of the software development process, 
by detecting and removing errors and defects early in 
the life cycle.  A list of traditional software assurance 
activities are shown in Table 1, along with the artifacts 
to be checked throughout the life cycle (i.e., 
Requirement, Design, Code, Test/Debug, and 
Operation) in practice at JPL. 

 
Software 

Assurance 
Activities 

Software Assurance  
Artifacts 

Software 
Development 
Process and 
Monitoring 

Software Development Plan, Project 
Management Plan, Software Quality 
Assurance Plan, Software Configuration 
Management Plan, Software Risk 
Management Plan 

Subcontractor 
Controls 

Requests for Proposals, Statements-Of-
Work, Procurement Requisitions, Pre-
award Vendor Software Surveys 

Software 
Requirements 
Analysis 

Level 1, 1, 2, 3, 4, and 5 Requirements 
Documentation, Functional 
Specification, Interface Control 
Documentation, Bi-Directional 
Traceability, Operational Specs 

Software Reviews Code Walkthrough, Unit Test 
Walkthrough, Test Case Generation, 
Code Run-time Monitoring, Code Static 
Analysis 

Formal Reviews Conceptual Design Reviews, 
Preliminary Design Reviews, 
Architecture Reviews, Detailed Design 
Reviews, Test Readiness Reviews, 
Assembly and Operation Readiness 
Reviews 

Management 
Reviews 

Fever Chart, Risk Assessment, Project 
Insight and Oversight 

Peer Reviews Software Reuses, Inheritance 
Documentation, Test Plans and 
Procedures, Test Results Verification, 

Software Delivery 
Reviews 

Software Review Certification Records, 
Release Description Document, 
Acceptance Test 
Plan/Procedures/Report, End Item Data 
Packages 

Software Safety 
Hazard Analysis 

Safety-critical Components 
Assessment, Safety/Hazard Analysis 
Report  

Software FMECA 
And Fault Tree 
Analysis 

Software Failure Modes Effect and 
Criticality Analysis, Software Fault 
Tree Analysis 

Software 
Configuration 

Engineering Change Requests, Change 
Control Report, Configuration 

Management Management Report , Build List 
Software 
Problem/Failure 
Reporting 

Problem/Failure Report, Root Cause 
Analysis Report, Action Items Report , 
Test Traceability Matrix  

Verification and 
Validation 

Unit Test, Integration Test, System 
Test, User Acceptance Test , Subsystem 
Validation, System Validation, 
Hardware Review Certification Records 

 
Table 1. Software Assurance Activi t ies 
 
JPL tailored IBMer Fagan's original process [6] of 

software inspections to conform to its software 
development environment in 1987 [7]. Inspections are 
widely regarded as one of the most cost-effective 
techniques in the assurance arsenal. We believe 
inspections have the potential to be equally effective 
for model-based design and thus we apply current 
software assurance techniques such as software 
inspections [8] and peer reviews [9] to those models 
generated for flight software projects. A strategy is to 
combine advantages of both traditional assurance 
activities (e.g., peer reviews, milestone reviews, etc.) 
and analytic methods to ensure the quality of the model 
(e.g., the measures of correctness, completeness, and 
conformance) and the quality of the software 
implementation (e.g. the measures of defects, failures, 
and efficiency). This integrated software assurance 
process is depicted in Figure 1. 
  

 
 

Figure 1. Software Assurance Process 
 
Those traditional assurance activities listed in Table 

1 will be changed in the move to dealing with model 
based artifacts [10].  There will be fewer code 
walkthroughs, and instead more model walkthroughs 
and analyses  using several emerging techniques such 
as runtime monitoring (during simulation of the model), 
static analysis (adapted to models ), and model-
checking (by using SPIN).  As a result, it will be 
necessary to ensure the software community is ready 
for model-based design and the increasingly 
challenging missions’ software systems  developed with 
this paradigm. In this context, model-based design 
offers both a challenge and an opportunity to 
assurance: the challenge stems from the explosion in 

Requirement  Code Test/Debug Operation Design 

Auto Code Model 

Requirement  
Review 

Specification 
Review 

Auto 
Simulation 

Code 
Walkthru 

Code 
Inspection 

Model 
Checking 



detail and complexity, with which current software 
assurance practices will be hard-pressed to keep pace; 
the opportunity stems from the increased suitability to 
analytic methods of the artifacts (models and 
simulations) that pervade the model-based design 
paradigm.  

Within JPL and NASA, the emergence of model-
based design will reformulate the design process, and 
the nature of software assurance must change 
accordingly. Those assurance activities that will be 
changed in the move to model-based are shown in 
Table 2. Using model-based design combined with 
auto-coding, there will be less time required to check 
the 25 artifacts (listed in Table 2) out of the 60 software 
assurance artifacts (shown in Table 1). 

 
Software 

Assurance 
Activities 

Software Assurance  
Artifacts 

Software 
Development 
Process and 
Monitoring 

Software Quality Assurance Plan, 
Software Configuration Management 
Plan, Software Risk Management Plan 

Subcontractor 
Controls 

Statements-Of-Work 

Software 
Requirements 
Analysis 

Bi-Directional Traceability 

Software Reviews Code Walkthrough, Unit Test 
Walkthrough, Test Case Generation, 
Code Run-time Monitoring, Code Static 
Analysis 

Formal Reviews Detailed Design Reviews 
Management 
Reviews 

Risk Assessment 

Peer Reviews Software Reuses, Test Results 
Verification 

Software Delivery 
Reviews 

Software Review Certification Records, 
End Item Data Packages 

Software Safety 
Hazard Analysis 

Safety-critical Components Assessment 

Software FMECA 
And Fault Tree 
Analysis 

Software Fault Tree Analysis 

Software 
Configuration 
Management 

Configuration Management Report , 
Build List 

Software 
Problem/Failure 
Reporting 

Action Items Report , Test Traceability 
Matrix  

Verification and 
Validation 

Unit Test, Integration Test, System 
Test, User Acceptance Test  

 
Table  2 . Changed Activit ies 

 

3. Analytical Method 
 

The significant advantages of analytic methods over 
conventional assurance practices stem from their 
superior thoroughness, repeatability and applicability, 
especially for models  (e.g., [11, 12]). However, despite 
considerable JPL and NASA effort invested in them 
[13], and successful pilot applications on NASA 
spacecraft software (e.g., [14, 15, 16]), the uptake of 
formal methods in JPL’s software processes has been 
miniscule.   

We believe the primary impediment has been the 
effort needed to construct the formal models on which 
to perform the analyses. In conventional software 
development, these models take time to develop, and 
require personnel skilled in both the system being 
scrutinized and the mathematical underpinnings of the 
analysis methodology. The result is an approach that is 
costly, hard to find people to perform, and always 
struggles to remain up-to-date with the rapidly 
changing nature of flight project developments. Even 
for so-called “lightweight formal methods” reported in 
[16], where it is argued that the “benefit more than 
outweighs the extra cost of maintaining several 
representations”, infusing these into mainstream 
practice is challenging. Model-based design 
circumvents this impediment because the “models” of 
model-based design can serve as the formal models for 
analysis! Benefits will be greater yet if the formal 
models are easily reusable. 

This research aims to achieve early and more 
thorough detection (and resolution) of problems. By 
coupling analytic methods with automated tools, we 
aim to increase the utility of those techniques: an 
increased fraction of software related defects may be 
detected earlier in the development process (i.e., well in 
advance of testing). As illustration, two examples of 
UML statecharts are provided in Figures 2 and 3. The 
former has an unreachable state and the latter has an 
undesired state.  
 

 
 

Figure 2. Check the  Unreachable States 
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The state-machine shown in Figure 2 does not 
satisfy the “reachability” property. The semantics of 
this UML Statechart is such that when the Anom event 
is generated, the transition from the Running state to 
the Preposition state takes preference over the 
transition from the Powered state to the Configuring 
state. 
 

 
 

Figure 3. Check the  Undesired States 
 

The UML statechart shown in Figure 3 consists of 
three concurrently running state-machines 
(MainControl, Run1, and Run2). The MainControl 
state-machine is responsible for directing control by 
sending internal command events to the Run1 state-
machine and the Run2 state-machine. There are 3 
external events (e.g., Run1Ev, Run2Ev, and 
TimeoutEv). An undesired state was found (Run1 = On 
&& Run2 = On). In the correct model, the MainControl 
state-machine must send out a command after it 
receives an acknowledgement that the other state-
machine has transitioned to Off (Run1OffAck and 
Run2OffAck). 

When formal models exist, we need to reconsider the 
purposes of human review/inspection. For simple 
syntactic properties (e.g., detection of statecharts 
lacking an initial transition), we may instead utilize 
simple automation check the statecharts. Depending on 
the modeling tool(s) used, such checking may already 
be built in to the tool used to help in the construction 
of models, or if not, can easily be provided in the form 
of simple scripts that check the output of such tools. 

Human review/inspection of models is well suited to 
checking some of the validity of the models. But, for 
properties that stem from the behaviors implied by 
models  (e.g., unreachability of states, analogous to 
dead code in classical software), human inspection is 
not particularly well suited. Likewise, when behaviors 
involve multiple, cooperating statecharts, human 
inspection is also challenged – in both of these cases 
model checking is well known to be an appropriate 
technique. 
 
4. Conclusions 
 

Two factors drive the need for this research.  First, 
within JPL and NASA, the emergence of model-based 

design will reformulate the design process, and the 
nature of software assurance must change accordingly. 
Second, the scale and complexity of mission-critical 
software is increasing as NASA’s missions become 
more challenging. 

The results of this research will have applicability 
that spans NASA's mission suite: the stringent 
reliability needs of NASA's human exploration activities 
(Crew Exploration Vehicle, CEV and Constellation) of 
ESMD (Exploration System Mission Directorate) relate 
to model based approaches (e.g., Simulation Based 
Acquisition), and thus dovetail with this research 
focus. The use of model based design as a means to 
accelerate the design and development process is 
expected to continue in JPL's mission set. 
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